Le Centre de recherche

Nos tutelles


Accueil du site > Pages personnelles > GRELET Eric


CNRS research director (DR2)

office : #217
115 avenue Dr Schweitzer 33600 Pessac, France
Tel : (+33) 5 56 84 56 13
Fax : (+33) 5 56 84 56 00
eMail : eric.grelet[AT]crpp.cnrs.fr

Research interest - Curriculum - Publication list


SOFT CONDENSED MATTER and Materials Science

Liquid Crystals / Colloids & Nanoparticles / Complex Fluids

We aim at elucidating rules that govern self-assembly, especially focusing on the role of particle’s shape, interaction (entropy vs. enthalpy), chirality and activity (self-propulsion).

We are currently working on the dynamics, the phase behavior and the functionalization of complex fluids with a particular interest for filamentous bacteriophages (fd and M13).

We have been also involved on the use of self-assembled discotic molecules as active layers in organic solar cells.

Our group is currently a member of the Soft Matter team (M2SD : “Matière Molle, Structure et Dynamique”) at the Centre de Recherche Paul-Pascal.


Professionnal carrier

Awards and distinctions


Self-organization and self-assembly of rod-like viruses

  • 25. Speeding up dynamics by tuning the non-commensurate size of rod-like particles in a smectic phase, M. Chiappini, E. Grelet, M. Dijkstra, Phys. Rev. Lett. 124, 087801 (2020) [©APS,arXiv]

  • 24. Depletion-driven morphological transitions in hexagonal crystallites of virus rods, B. Sung, H.H. Wensink, E. Grelet*, Soft Matter 15, 9520 (2019) [©RSC,arXiv].

  • 23. Directing Liquid Crystalline Self-Organization of Rodlike Particles through Tunable Attractive Single Tips, A. Repula, M. Oshima Menegon, C. Wu, P. van der Schoot, E. Grelet*, Phys. Rev. Lett. 122, 128008 (2019) [©APS,arXiv]

    Highlighted by CNRS

  • 22. Immuno-Based Molecular Scaffolding of Glucose Dehydrogenase and Ferrocene Mediator on fd Viral Particles Yields Enhanced Bioelectrocatalysis, K. Torbensen, A. N. Patel, A. Anne,* A. Chovin, Ch. Demaille,* L. Bataille, Th. Michon,* and E. Grelet, ACS Catal. 9, 5783 (2019) [©ACS]

  • 21. Elementary edge and screw dislocations visualized at the lattice periodicity level in the smectic phase of colloidal rods, A. Repula, E. Grelet*, Phys. Rev. Lett. 121, 097801 (2018) [©APS,arXiv]

    Highlighted by CNRS

  • 20. Chirality-controlled crystallization via screw dislocations, B. Sung, A. de la Cotte, E. Grelet*, Nature Communications 9, 1405 (2018) [©©] Open access article.

    Highlighted by CNRS

  • 19. Rod-Like Virus Based Multiarm Colloidal Molecules, A. de la Cotte, C. Wu, M. Trevisan, A. Repula, E. Grelet*, ACS Nano 11, 10616 (2017) [©ACS,arXiv]

  • 18. Fast Diffusion of Long Guest Rods in a Lamellar Phase of Short Host Particles, L. Alvarez, M.P. Lettinga*, E. Grelet*, Phys. Rev. Lett. 118, 178002 (2017) [©APS,arXiv]

    Highlighted by CNRS

  • 17. Scaffolding of Enzymes on Virus Nanoarrays : Effects of Confinement and Virus Organization on Biocatalysis, A. N. Patel, A. Anne,* A. Chovin, Ch. Demaille,* E. Grelet, Th. Michon,* and C. Taofifenua, Small 13, 1603163 (2017)[©Wiley]

  • 16. From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles, E. Grelet*, R. Rana, Soft Matter 12, 4621 (2016) [©©] Open access article.

  • 15. Hard-Rod Behavior in Dense Mesophases of Semiflexible and Rigid Charged Viruses, E. Grelet*, Phys. Rev. X 4, 021053 (2014) [©©] Open access article.

    Highlighted by CNRS

  • 14. Fractional Hoppinglike Motion in Columnar Mesophases of Semiflexible Rodlike Particles, S. Naderi, E. Pouget, P. Ballesta, P. van der Schoot*, M.P. Lettinga, E. Grelet*, Phys. Rev. Lett. 111, 037801 (2013) [©APS,arXiv]

  • 13. Dispersions of monodisperse hybrid rod-like particles by mineralization of filamentous viruses, E. Pouget, E. Grelet*, Langmuir 29, 8010 (2013) [©ACS]

  • 12. Tuning chirality in the self-assembly of rod-like viruses by chemical surface modifications, Z. Zhang, E. Grelet*, Soft Matter 9, 1015 (2013) [©RSC]
  • 11. Orientational order of carbon nanotube guests in a nematic host suspension of colloidal viral rods, N. Puech, M. Dennison, C. Blanc, P. van der Schoot, M. Dijkstra, R. van Roij, P. Poulin, E. Grelet*, Phys. Rev. Lett. 108, 247801 (2012) [©APS,arXiv]

  • 10. Dynamics in the smectic phase of stiff viral rods, E. Pouget, E. Grelet*, M.P. Lettinga*, Phys. Rev. E 84, 041704 (2011) [©APS,arXiv]

  • 9. Hybrid Macroscopic Fibers from the Synergistic Assembly Between Silica and Filamentous Viruses, E. Grelet*, A. Moreno, R. Backov, Langmuir 27, 4334 (2011) [©ACS]

  • 8. Des virus comme système modèle de cristaux liquides, E. Grelet*, L’Actualité Chimique 347, 20 (2010) [©SCF]
  • 7. Reversible gelation of rod-like viruses grafted with thermoresponsive polymers, Z. Zhang, N. Krishna, M.P. Lettinga*, J. Vermant, E. Grelet*, Langmuir 25, 2437 (2009) [©ACS]

  • 6. Dynamical and structural insights into the smectic phase of rod-like particles, E. Grelet*, M.P. Lettinga, M. Bier, R. Van Roij, P. van der Schoot J. Phys. : Condens. Matter 20, 494213 (2008) [©IOP]

  • 5. Hexagonal order in crystalline and columnar phases of hard rods, E. Grelet*, Phys. Rev. Lett. 100, 168301 (2008) [©APS]
    Selected as PRL Editors’ Suggestion.

  • 4. Self-diffusion of rodlike viruses through smectic layers, M.P. Lettinga, E. Grelet, Phys. Rev. Lett. 99, 1997802 (2007) [©APS,arXiv]
    Selected by Virtual Journal of Biological Physics Research, vol. 14, issue 10 (2007)

  • 3. Chiral nematic phase of suspensions of rodlike viruses : Left-handed phase helicity from a right-handed molecular helix, F. Tombolato, A. Ferrarini, E. Grelet, Phys. Rev. Lett. 96, 258302 (2006) [©APS]
    Selected by Virtual Journal of Biological Physics Research, vol. 12, issue 1 (2006)

  • 2. Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran, Z. Dogic, K.R. Purdy, E. Grelet, M. Adams, S. Fraden, Phys. Rev. E 69, 051702 (2004) [©APS,arXiv]

  • 1. What is the origin of chirality in the cholesteric phase of virus suspensions ?, E. Grelet*, S. Fraden, Phys. Rev. Lett. 90, 198302 (2003) [©APS,arXiv]

    Alignment, wetting and confinement of discotic liquid crystals

  • 11. Thermotropic orientational order of discotic liquid crystals in nanochannels : an optical polarimetry study and a Landau-de Gennes analysis, A. V. Kityk, M. Busch, D. Rau, S. Calus, C. V. Cerclier, R. Lefort, D. Morineau, E. Grelet, Ch. Krause, A. Schönhals, B. Frick, and P. Huber*, Soft Matter 10, 4522 (2014) [©RSC]

  • 10. Structure and Phase Behavior of a Discotic Columnar Liquid Crystal Confined in Nanochannels, C.V. Cerclier, M. Ndao, R. Busselez, R. Lefort, E. Grelet, P. Huber, A.V. Kityk, L. Noirez, A. Schönhals, D. Morineau*, J. Phys. Chem. C 116, 18990 (2012) [©ACS]

  • 9. Anchoring transition in confined discotic columnar liquid crystal films, T. Brunet, O. Thiebaut, E. Charlet, H. Bock, J. Kelber, E. Grelet*, Europhys. Lett. (EPL) 93, 16004 (2011) [©IOP]

  • 8. Toward Organic Photovoltaic Cells Based on the Self-Assembly of Discotic Columnar Liquid Crystals, E. Grelet*, H. Bock, T. Brunet, J. Kelber, O. Thiebaut, P. Jolinat, S. Mirzaei, P. Destruel, Mol. Cryst. Liq. Cryst. 542, 182 (2011) [©CRC]

  • 7. Face-on oriented bilayers of two discotic columnar liquid crystals for organic donor-acceptor hetreojunction, O. Thiebaut, H. Bock, E. Grelet*, J. Am. Chem. Soc. 132, 6886 (2010) [©ACS]
    Highlight in Noteworthy Chemistry of the ACS, June 7, 2010

  • 6. Morphology of open films of discotic hexagonal columnar liquid crystals as probed by grazing incidence X-ray diffraction, E. Grelet*, S. Dardel, H. Bock, M. Goldmann, E. Lacaze, F. Nallet, Eur. Phys. J. E 31, 343 (2010) [©EDP]
    Highlight in EuroPhysicsNews, 41 (3), 12 (2010)

  • 5. Measurement of the exciton diffusion length in discotic columnar liquid crystals : Comparison between homeotropically oriented and non-oriented samples, L. Cisse, P. Destruel, S. Archambeau, I. Seguy, P. Jolinat, H. Bock, E. Grelet, Chem. Phys. Lett. 476, 89 (2009) [©Elsevier]

  • 4. Anisotropic light absorption, refractive indices and orientational order parameter of unidirectionally aligned columnar liquid crystal films, E. Charlet, E. Grelet*, Phys. Rev. E 78,041707 (2008) [©APS]]

  • 3. Ultrathin films of homeotropically aligned columnar liquid crystals on indium tin oxide electrodes, E. Charlet, E. Grelet*, P. Brettes, H. Bock, H. Saadaoui, L. Cisse, P. Destruel, N. Gherardi, I. Seguy , Appl. Phys. Lett. 92, 024107 (2008). [©AIP]

  • 2. Stabilization of discotic liquid organic thin films by ITO surface treatment, S. Archambeau, I. Seguy, P. Jolinat, J. Farenc, P. Destruel*, T.P. Nguyen, H. Bock, E. Grelet, Appl. Surf. Sci. 253, 2078 (2006) [©Elsevier]

  • 1. Control of the orientation of thin open supported columnar liquid crystal films by the kinetics of growth, E. Grelet*, H. Bock Europhys. Lett. (EPL) 73, 712 (2006) [©IOP]

    Anisotropic colloidal systems : from carbon nanotubes to mineral particles

  • 7. Electric field induced birefringence in non-aqueous dispersions of mineral nanorods, A. de la Cotte, P. Merzeau, J. Kim, K. Lahlil, J.‐P. Boilot, T. Gacoin, E. Grelet*, Soft Matter 11, 6595 (2015) [©©,arXiv] Open access article.

  • 6. Liquid crystals of carbon nanotubes and graphene, C. Zakri, C. Blanc, E. Grelet, C. Zamora-Ledezma, N. Puech, E. Anglaret, P. Poulin*, Phil. Trans. R. Soc. A 371, 1988 (2013) [©RSC]

  • 5. Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide, C. Zamora-Ledezma, N. Puech, C. Zakri, E. Grelet, S.E. Moulton, G. Wallace, S. Gambhir, C. Blanc, E. Anglaret, P. Poulin*, J. Phys. Chem. Lett. 3, 2425 (2012) [©ACS]

  • 4. LaPO4 Mineral Liquid Crystalline Suspensions with Outstanding Colloidal Stability for Electro‐Optical Applications, J. Kim, A. de la Cotte, R. Deloncle, S. Archambeau, C. Biver, J.‐P. Cano, K. Lahlil, J.‐P. Boilot, E. Grelet*, T. Gacoin*, Adv. Funct. Mater. 22, 4949 (2012) [©Wiley]

  • 3. Highly ordered carbon nanotube nematic liquid crystals, N. Puech, C. Blanc, E. Grelet, C. Zamora-Ledezma, M. Maugey, C. Zakri, E. Anglaret, P. Poulin*, J. Phys. Chem. C 115, 3272 (2011) [©ACS]

  • 2. Confinement-induced phase transition in a DNA-lipid hydrated complex, E. Andreoli De Oliveira, E.R. Teixeira Da Silva, A. Fevrier, E. Grelet, F. Nallet, L. Navailles, Europhys. Lett. (EPL) 91, 28001 (2010) [©IOP]

  • 1. Nematic droplets in aqueous dispersions of carbon nanotubes, N. Puech, E. Grelet, P. Poulin, C. Blanc, P. van der Schoot, Phys. Rev. E 82, 020702 (2010) [©APS]

    Structural studies on molecular and supramolecular systems

  • 15. [1,2,3]-triazole derivatives : Mesomorphic property dependence on the molecular shape, S. Benallou, S. Saidi-Besbes*, E. Grelet, A. Bentaleb, Mol. Cryst. Liq. Cryst. 647, 290 (2017) [©CRC]

  • 14. Self-Assembly of Ionizable “Clicked” P3HT-b-PMMA Copolymers : Ionic Bonding Group/Counterion Effects on Morphology, E. Ji, V. Pellerin, L. Rubatat, E. Grelet, A. Bousquet, L. Billon*, Macromolecules 50, 235 (2017) [©ACS]

  • 13. Synthesis and mesomorphic behaviour of unsymmetrical tetracatenar [1,2,3]-triazole derivatives, S. Benallou, S. Saidi-Besbes*, E. Grelet, A. Bentaleb, A. Elaissari, G. Agusti, A. Derdour, Liq. Cryst. 43, 505 (2016) [©CRC]

  • 12. X-ray scattering in the vorticity direction and rheometry from confined fluids, P. Pfleiderer, S. J. Baik, Z. Zhang, G. Vleminckx, M. P. Lettinga, E. Grelet, J. Vermant, Ch. Clasen*, Rev. Sci. Instrum. 85, 065108 (2014) [©AIP]

  • 11. Effect of spacer insertion in a commonly used dithienosilole / benzothiadiazole-based low band gap copolymer for polymer solar cells, H. Medlej, H. Awada, M. Abbas, G. Wantz, A. Bousquet, E. Grelet, K. Hariri, T. Hamieh, R. Hiorns, C. Dagron-Lartigau*, Eur. Polym. J. 49, 4176 (2013) [©Elsevier]

  • 10. Structure–property study of new [1,2,3]-triazole liquid crystalline derivatives, C. Benbayer, S. Saïdi-Besbes*, E. Grelet, A. Derdour, Liq. Cryst. 40, 1520 (2013) [©CRC]

  • 9. Synthesis and mesomorphic properties of novel [1–3]-triazole mesogenic based compounds, C. Benbayer, N. Kheddam, S. Saïdi-Besbes*, E.T. de Givenchy, F. Guittard, E. Grelet, A.M. Safer, A. Derdour , J. Mol. Struct. 1034, 22 (2013) [©Elsevier]

  • 8. Discotic nickel bisdithiolenes complexes : synthesis, optoelectrochemical and mesomorphic properties, T.-T. Bui, O. Thiebaut, E. Grelet, M.F. Achard, B. Garreau de Bonneval*, K. Chane-Ching*, Eur. J. Inorg. Chem. 17, 2663 (2011) [©Wiley]
  • 7. Room-Temperature Columnar Liquid-Crystalline Perylene Imido-Diesters by a Homogeneous One-Pot Imidification–Esterification of Perylene-3,4,9,10-tetracarboxylic Dianhydride, J. Kelber, H. Bock*, O. Thiebaut, E. Grelet, H. Langhals, Eur. J. Org. Chem. 4, 707 (2011) [©Wiley]

  • 6. Soluble and columnar liquid crystalline peropyrene-quinones by coupling of phenalenones in caesium hydroxide, N. Buffet, E. Grelet, H. Bock*, Chem. Eur. J. 16, 5549(2010) [©Wiley]

  • 5. Novel columnar LCs for a new generation of organic solar cells , H. Bock*, N. Buffet, E. Grelet, I. Seguy, J. Navarro, P. Destruel, Proceedings of SPIE 6911 (2008) [©SPIE]

  • 4. An Efficient Route to Stable Room-Temperature Liquid-Crystalline Triphenylenes, H. Bock*, M. Rajaoarivelo, S. Clavaguera, E. Grelet, Eur. J. Org. Chem. 13, 2889 (2006) [©Wiley]
  • 3. Extension of the resonant scattering technique to liquid crystals without resonant element, P. Fernandes, P. Barois*, E. Grelet, F. Nallet, J. Goodby, M. Hird, J.S. Micha, Eur. Phys. J. E 20, 81 (2006) [©Springer]

  • 2. Soluble and Liquid‐Crystalline Ovalenes, S. Saïdi-Besbes, E. Grelet, H. Bock*, Angew. Chem. Int. Ed. 45, 1783 (2006) [©Wiley]

  • 1. Liquid‐Crystalline Polymethacrylates by Atom‐Transfer Radical Polymerization at Ambient Temperature, M.H. Li*, P. Keller, E. Grelet, P. Auroy, Macromol. Chem. Phys. 203, 619 (2002) [©Wiley]

    Smectic Blue Phases

  • 9. Liquid crystals exhibiting a double geometrical frustration : the smectic blue phases , E. Grelet*, Mol. Cryst. Liq. Cryst. 412, 37 (2004) [©CRC]

  • 8. Liquid-crystalline smectic blue phases, E. Grelet*, Liquid Crystals Today 12, 1 (2003) [©CRC]

  • 7. Faceted monodomains of liquid crystal smectic blue phases, E. Grelet*, B. Pansu, M.H. Li, H.T. Nguyen, Phys. Rev. E 65, 050701(R) (2002) [©APS]

  • 6. Optical activity measurements in the smectic blue phases, E. Grelet*, P.J. Collings, M.H. Li, H.T. Nguyen Eur. Phys. J. E 6, 157 (2001) [©Springer]

  • 5. A new series with smectic blue phases and SmC*-BPSm2 direct transition, C. Da Cruz, E. Grelet, J.C. Rouillon, J.P. Marcerou, G. Sigaud, B. Pansu, H.T. Nguyen*, Liq. Cryst. 28, 1415 (2001) [©CRC]

  • 4. Influence of the molecular tilt on the structure of smectic blue phases, E. Grelet*, B. Pansu, H.T. Nguyen, Phys. Rev. E 64, 010703(R) (2001) [©APS]

  • 3. A chiral material with a new phase sequence : twist grain boundary smectic C phase – smectic blue phases, E. Grelet*, B. Pansu, H.T. Nguyen, Liq. Cryst. 28, 1121 (2001) [©CRC]

  • 2. Structural investigations on smectic blue phases, E. Grelet, B. Pansu, M.H. Li, H.T. Nguyen, Phys. Rev. Lett. 86, 3791 (2001) [©APS]

  • 1. Hexagonal symmetry for smectic blue phases, B. Pansu, E. Grelet, M.H. Li, H.T. Nguyen, Phys. Rev. E 62, 658 (2000) [©APS]