Le Centre de recherche

Nos tutelles

Rechercher




Accueil du site > Pages personnelles > YUAN Jinkai

YUAN Jinkai

CNRS Research Associate

ORCID : 0000-0003-2347-5191
ResearcherID : F-3332-2011

CONTACT

Centre de Recherche Paul Pascal (CRPP)
CNRS - University of Bordeaux
115 avenue Dr Schweitzer 33600 Pessac, France
phone : +33 (0) 5 56 84 56 27
fax : +33 (0) 5 56 84 56 00
E-Mail : jinkai.yuan@crpp.cnrs.fr


RESEARCH ACTIVITIES

Formulation of polymer composite in bulk, film and fiber, 3D microfabrication
Dielectric properties, Electrostriction, Shape memory, Piezoresistive
Power energy storage, Mechanical energy harvesting, Artificial muscles, Sensors


CURRICULMUM

Professional Employment
Since 2016, CNRS researcher at CRPP
2016, Visiting researcher at Institute of Chemistry, China
2013-2015, Postdoc research fellowship at CRPP

Education
2012, Ph.D. on Materials science, Ecole Centrale Paris, France
2009, M.S. on Materials science, Beijing University of Chemical Technology, China
2006, B.S. on Materials science, Beijing University of Chemical Technology, China


SELECTED PUBLICATIONS

1. Shape memory nanocomposite fibers for untethered high-energy microengines
J. Yuan*, W. Neri, C. Zakri, P. Merzeau, K. Kratz, A. Lendlein, P. Poulin*
Science 2019, 365, 155.

2. Inkjet printing of latex based high-energy microcapacitors
F. Torres-Canas, J. Yuan*, I. Ly, W. Neri, A. Colin, P. Poulin*
Adv. Funct. Mater. 2019, 1901884.

3. All organic mcroelectromechanical systems integrating electrostrictive nanocomposite for mechanical energy harvesting
H. Nesser, H. Debéda, J. Yuan, A. Colin, P. Poulin, I. Dufour, C. Ayela
Nano Energy. 2018, 44, 1-6.

4. Giant electrostriction of soft nanocomposites based on liquid crystalline graphene
J. Yuan*, A. Luna, W. Neri, C. Zakri, A. Colin, P. Poulin
ACS Nano 2018, 12, 1688-1695.

5. Graphene liquid crystal retarded percolation for new high-k materials
J. Yuan, A. Luna, W. Neri, C. Zakri, T. Schilling, A. Colin, P. Poulin
Nat. Commun. 2015, 6, 8700.

6. Flexible nanodielectric materials with high permittivity for power energy storage.
Z. Dang*, J. Yuan*, S. Yao, R. Liao
Adv. Mater. 2013, 25, 6334.

7. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity.
Z. Dang, T. Zhou, S. Yao, J. Yuan, J. Zha, H. Song, J. Li, Q. Chen, W. Yang, J. Bai
Adv. Mater. 2009, 21, 2077.

8. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles
T. Zhou, J. Zha, R. Cui, B. Fan, J. Yuan, Z.M. Dang
ACS Appl. Mater. Interfaces 2011, 3, 2184.

9. Giant dielectric permittivity nanocomposites : realizing true potential of pristine carbon nanotubes in poly(vinylidene fluoride) matrix through an enhanced interfacial interaction
J. Yuan, S. H. Yao, Z. M. Dang, A. Sylvestre, M. Genestoux, J. Bai
J. Phys. Chem. C. 2011,115, 5515.

10. Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density.
J. Yuan, Z.M. Dang, S.H. Yao, J.W. Zha, T. Zhou, S.T. Li, J. Bai
J. Mater. Chem. 2010, 20, 2441.


GRANTS
2019-2020, CNRS PEPS
2019-2021, Thomas Jefferson Fund